skip to main content


Search for: All records

Creators/Authors contains: "Prather, Rebecca M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Rocky Mountain Biological Laboratory (RMBL; Colorado, USA) is the site for many research projects spanning decades, taxa, and research fields from ecology to evolutionary biology to hydrology and beyond. Climate is the focus of much of this work and provides important context for the rest. There are five major sources of data on climate in the RMBL vicinity, each with unique variables, formats, and temporal coverage. These data sources include (1) RMBL resident billy barr, (2) the National Oceanic and Atmospheric Administration (NOAA), (3) the United States Geological Survey (USGS), (4) the United States Department of Agriculture (USDA), and (5) Oregon State University's PRISM Climate Group. Both the NOAA and the USGS have automated meteorological stations in Crested Butte, CO, ~10 km from the RMBL, while the USDA has an automated meteorological station on Snodgrass Mountain, ~2.5 km from the RMBL. Each of these data sets has unique spatial and temporal coverage and formats. Despite the wealth of work on climate‐related questions using data from the RMBL, previous researchers have each had to access and format their own climate records, make decisions about handling missing data, and recreate data summaries. Here we provide a single curated climate data set of daily observations covering the years 1975–2022 that blends information from all five sources and includes annotated scripts documenting decisions for handling data. These synthesized climate data will facilitate future research, reduce duplication of effort, and increase our ability to compare results across studies. The data set includes information on precipitation (water and snow), snowmelt date, temperature, wind speed, soil moisture and temperature, and stream flows, all publicly available from a combination of sources. In addition to the formatted raw data, we provide several new variables that are commonly used in ecological analyses, including growing degree days, growing season length, a cold severity index, hard frost days, an index of El Niño‐Southern Oscillation, and aridity (standardized precipitation evapotranspiration index). These new variables are calculated from the daily weather records. As appropriate, data are also presented as minima, maxima, means, residuals, and cumulative measures for various time scales including days, months, seasons, and years. The RMBL is a global research hub. Scientists on site at the RMBL come from many countries and produce about 50 peer‐reviewed publications each year. Researchers from around the world also routinely use data from the RMBL for synthetic work, and educators around the United States use data from the RMBL for teaching modules. This curated and combined data set will be useful to a wide audience. Along with the synthesized combined data set we include the raw data and the R code for cleaning the raw data and creating the monthly and yearly data sets, which facilitate adding additional years or data using the same standardized protocols. No copyright or proprietary restrictions are associated with using this data set; please cite this data paper when the data are used in publications or scientific events.

     
    more » « less
  2. The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975–2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species’ phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa. 
    more » « less
  3. Aim: Ongoing alterations to Earth’s biogeochemical cycles (e.g., via fertilization, burning of fossil fuels, and pollution) are expected to impact plants, plant consumers and all subsequent trophic levels. While fertilization experiments often reveal arthropod nutrient limitation by nitrogen and phosphorus via effects on plant nutrient density and biomass, these macronutrients are only two of many nutrients important to arthropod fitness. Micronutrients are key to osmoregulation and enzyme function and can interact synergistically with macronutrients to shape the geography of arthropod abundance. We examine arthropod response to macro- and micronutrient fertilization as a function of nutrient type, application amount, duration, frequency, and plant responses to fertilization with the goal of addressing how ongoing alterations to biogeochemical cycles will shape future grassland food webs. 
    more » « less
  4. Abstract

    The impacts of altered biogeochemical cycles on ecological systems are likely to vary with trophic level. Predicting how these changes will affect ecological food webs is further complicated by human activities, which are simultaneously altering the availability of macronutrients like nitrogen (N) and phosphorus (P), and micronutrients such as sodium (Na). Here we contrast three hypotheses that predict how increasing nutrient availability will shape grassland food webs. We conducted a distributed factorial fertilization experiment (N and P crossed with NaCl) across four North American grasslands, quantifying the responses of aboveground plant biomass and volume, plant tissue and soil elemental concentrations, as well as the abundance of five arthropod functional groups. Fertilization with N and P increased plant biomass and foliar N and P concentrations in grasses but not forbs. Fertilization with Na had no effect on plant biomass but increased foliar Na concentrations. Consistent with the nutrient limitation hypothesis, we found strong evidence of nutrient limitation for insect herbivores across the four sites with sucking (phloem and xylem feeding) herbivores increasing in abundance with NP fertilization and chewing herbivores increasing in response to both Na and NP fertilization, and a trend for increased response of arthropods to lower plant nutrient availability. We found no evidence for an interaction of NaCl and NP on arthropod abundance as predicted by the serial colimitation hypothesis. Finally, consistent with the ecosystem size hypothesis, predator and parasitoid abundances increased with plant volume, but not fertilization. Our results suggest these functional group‐specific responses to changes in plant nutrients and structure are key to predicting the future of grassland food webs in an era with increasing use of N and P fertilizers, and increasing terrestrial inputs of Na from road salt, saline irrigation water, and aerosols due to rising sea levels.

     
    more » « less
  5. Abstract

    Habitat heterogeneity affects both biotic and abiotic factors important in determining arthropod community composition. In a sandy, mixed‐grass prairie in the southern Great Plains, we used clipping and NPK fertilization to manipulate plant biomass, habitat heterogeneity, and plant quality to quantify their relative effects on the abundance and diversity of its arthropod community. Both clipping and fertilization treatments affected plant biomass and microclimate, including light availability, temperature, and humidity. By decreasing plant biomass, clipping simplified habitat structure and resulted in reduced arthropod abundance and diversity and increased arthropod activity. This reduction appeared to be mediated by fertilizer addition, which increased total plot carbon, plant biomass, and habitat volume, resulting in lower average surface temperature and higher average humidity. By itself, increasing plant biomass through fertilization increased arthropod abundance, activity, and richness. In addition, we show that changing microclimate and plant biomass promoted shifts in arthropod community composition. These results demonstrate the role of habitat heterogeneity and plant quality in structuring arthropod community composition, specifically by regulating microclimate and providing habitat space.

     
    more » « less
  6. Abstract

    Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.

     
    more » « less
  7. Abstract

    We investigate where bottom‐up and top‐down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100‐fold shifts in the biomass of four common grassland arthropod taxa—Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators.

    Bottom‐up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature.

    The Exploitation Ecosystem Hypothesis is a top‐down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom‐up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top‐down limited.

    Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability.

    Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom‐up and top‐down regulation.

     
    more » « less